Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences
نویسندگان
چکیده
Multi-angle remote sensing images are acquired over the same imaging scene from different angles, and share similar but not identical information. It is therefore possible to enhance the spatial resolution of the multi-angle remote sensing images by the super-resolution reconstruction technique. However, different sensor shooting angles lead to different resolutions for each angle image, which affects the effectiveness of the super-resolution reconstruction of the multi-angle images. In view of this, we propose utilizing adaptive weighted super-resolution reconstruction to alleviate the limitations of the different resolutions. This paper employs two adaptive weighting themes. The first approach uses the angle between the imaging angle of the current image and that of the nadir image. The second is closely related to the residual error of each low-resolution angle image. The experimental results confirm the feasibility of the proposed method and demonstrate the effectiveness of the proposed adaptive weighted super-resolution approach.
منابع مشابه
Super-Resolution Reconstruction of Remote Sensing Images Using Multiple-Point Statistics and Isometric Mapping
When using coarse-resolution remote sensing images, super-resolution reconstruction is widely desired, and can be realized by reproducing the intrinsic features from a set of coarse-resolution fraction data to fine-resolution remote sensing images that are consistent with the coarse fraction information. Prior models of spatial structures that encode the expected features at the fine (target) r...
متن کاملStudy on the Super-resolution Reconstruction Algorithm for Remote Sensing Image Based on Compressed Sensing
Image super resolution reconstruction has important significance in remote sensing image feature extraction and classification etc.. Because the remote sensing image size is larger, it is difficult to super resolution reconstruction using multiple images, the compressed sensing (CS) theory was introduced into the super-resolution reconstruction. Algorithm designed the low pass filter to reduce ...
متن کاملSpatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement
There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is...
متن کاملObject Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images
Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...
متن کاملAn Example-based Super-Resolution Algorithm for Multi-Spectral Remote Sensing Images
This paper proposes an example-based superresolution algorithm for multi-spectral remote sensing images. The underlying idea of this algorithm is to learn a matrix-based implicit prior from a set of high-resolution training examples to model the relation between LR and HR images. The matrixbased implicit prior is learned as a regression operator using conjugate decent method. The direct relatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 6 شماره
صفحات -
تاریخ انتشار 2014